SERVICE

MODEL

A10 \& A12

ENGINE

EM

GENERAL DESCRIPIION EM. 2
ENGINE DISASSEMBLY EM. 5
INSPECTION AND REPAIR EM. 8
ENGINE ASSEMBLY EM-21
SERVICE DATA AND SPECIFICATIONS EM-21
TROUBLE DIAGNOSES AND CORRECTIONS EM-31
SPECIAL SERVICE TOOLS EM-34
SECTION EM

ENGINE MECHANICAL

MECHANICAL

GENERAL DESCRIPTION

CONTENTS

CYLINDER HEAD	EM-2
CYLINDER BLOCK	EM-2
CRANKSHAFT, PISTON AND	
CONNECTING ROD	EM-3

```
VALVE MECHANISM, CAMSHAFT,
CAMSHAFT DRIVE
EM-4
MANIFOLDS ................................. EM- . E
```

The A10 and A12 engines are of an overhead valve, four cylinder design which has the camshaft located in a high position. The layout of these engine components is basically the same with the exception of the distributor location, oil filter installation direction and the number of the crankshaft main bearings.

Since the A10 and A12 engines differ in minor details only, these two engine models are treated collectively unless otherwise noted.

Fig. EM-1 Cylinder head

CYLINDER BLOCK

The design of the cylinder blocks differs for the A12 and A10 engines. The A12-engine cylinder block utilizes a five bearing support system and the Al0-engine cylinder block utilizes a
three bearing system. Each cylinder block is provided with a baffle plate and a steel net to reduce oil consumption. (The steel net scoops oil.)

Fig. EM-2 Cylinder block

CRANKSHAFT, PISTON AND CONNECTING RODS

The crankshaft for A10 engine is supported by three main bearings and that for the A12 engine is by five bearings. These main bearings are lubricated through oil holes which intersect the main oil gallery in parallel with the cylinder bores.

The A12 engine uses concave head pistons, and the A10 engine uses flat head pistons. The piston pin is connected to the piston by full floating fit and to the connecting rod by press fit.

Full pressure lubrication is directed to the connecting rod through drilled oil passages from the adjacent main bearing journal so that oil is supplied to give maximum lubrication just before full bearing load is applied.

Fig. EM-3 Crankshaft, piston and connecting rod

VALVE MECHANISM, CAMSHAFT, CAMSHAFT DRIVE

The valve system has a push rod type rocker arm which uses the single type valve springs.

The camshaft is supported by five camshaft bearings. Camshaft bearings are lubricated through oil holes which intersect the main oil gallery of the cylinder block.

Concentric passages are drilled in the front and rear parts of the camshaft for supplying oil to each cam
lobe through an oil hole drilled in the base circle of each lobe.

Lubricant is supplied to the front oil gallery from 2nd camshaft bearing.

From the center camshaft bearing, lubricant is supplied to the valve rocker shaft through the center rocker shaft bracket.

The location of the distributor drive gear in the camshaft differs
between the A10 and the A12 engine.
The camshaft is driven with a double row roller chain from the crankshaft.

The tension of the chain is controlled by the chain tensioner which is operated with springs and oil pressure.

The rubber shoe type tensioner insulates vibration of the chain and controls the tension of the chain.

MANIFOLDS

The intake manifold has two openings; one is located on the primary side and the other on the secondary side.

The exhaust manifold has a heat control valve which assures stable and smooth engine running after starting during cold season. The manifold is
connected to the exhaust pipe by flanges, which completely eliminate exhaust leaking.

EM560

1 Intake manifold
2 Exhaust manifold

Fig. EM-5 Manifold

ENGINE DISASSEMBLY

CONTENTS

ENGINE REMOVAL	EM-5	DISASSEMBLY	EM-6
PRELIMINARY CLEANING AND		PISTON AND CONNECTING ROD	EM-7
INSPECTION	EM-5	CYLINDER HEAD	EM-7

ENGINE REMOVAL

To remove engine from car, refer to Section ER for Removal. Remove starting motor.

Remove transmission from engine.

PRELIMINARY CLEANING AND INSPECTION

Before disassembling engine, observe the following items.

1. Fuel, oil or water may leak past cylinder head and block. Prior to disassembling, check rocker cover, cylinder head, timing chain cover, water pump, oil pump, fuel pump, oil
pan gaskets, oil filter, distributor, \mathbf{O} rings, crankshaft, and water pump seals for sign of leak past gasketed surfaces.
2. Check condition of carburetor and fuel pump; fuel hoses for deterioration, cracks or full leakage past jointed or connected surfaces.
3. Wipe dust and mud off engine.
4. Inspect block cylinder head, rocker cover, timing chain cover, oil pan and all other outer parts for visual cracks and damaged or missing parts such as bolts and nuts.
5. Check all piping and electrical circuits for discontinuity and broken or damaged insulation.

DISASSEMBLY

1. Remove engine mounting bracket R.H. (A10 engine). Install Engine Attachment ST05270000 and mount engine on Engine Stand ST0501S000.
2. Remove clutch assembly.
3. Remove alternator and fan belt.
4. Remove alternator bracket and alternator adjusting bar.
5. Remove fan, fan spacer and pulley.
6. Remove oil level gauge.
7. Remove distributor cap and high tension cables as an assembly.
8.' Disconnect distributor vacuum line from distributor and remove distributor.
8. Disconnect fuel line from carburetor.
9. Remove fuel pump and fuel line.

Remove fuel pump gasket and spacer.
11. Remove thermostat housing and thermostat.
12. Remove engine mounting bracket R.H.
13. Remove oil pump and filter assembly.
14. Remove spark plugs.
15. Install Engine Attachment ST05200000 to cylinder block using engine mounting bracket R.H. attaching studs, fuel pump attaching studs and alternator bracket attaching bolt holes. (A12 engine)
16. Mount engine on Engine Stand ST0501S000. (A12 engine)

Fig. EM-6 Engine mounted on engine stand
17. Remove engine mounting bracket L.H.
18. Remove P.C.V. hose (pipe connector to control valve).
19. Remove intake and exhaust manifold assembly with carburetor.

Fig. EM-7 Removing manifolds with carburetor
20. Remove rocker cover.
21. Loosen valve rocker adjusting nuts and turn adjusting screws out to disengage push rods. Then evenly loosen rocker shaft bolts.
22. Remove rocker shaft assembly.

EM453
Fig. EM-8 Removing rocker shaft assembly
23. Withdraw push rods, and keep them in correct order.
24. Loosen cylinder head bolts a little at a time in the sequence shown in Figure EM-9, and remove cylinder head.

EM454
Fig. EM-9 Cylinder head bolt loosening sequence

EM457
Fig. EM-10 Removing cylinder head

Note: Do not pry between head and block as gasket surfaces may become damaged.
25. Invert engine.
26. Remove oil pan and oil strainer.
27. Invert engine.
28. Remove water pump.
29. Remove crank pulley and timing chain cover.

Fig. EM-11 Removing timing chain cover
30. Remove oil thrower and chain tensioner
31. Loosen camshaft sprocket bolt and remove both sprockets and timing chain as an assembly.
32. Remove connecting rod caps and push piston and connecting rod assemblies out of the bores.

Take off connecting rod bearings and keep them in order.

Fig. EM-12 Removing piston and connecting rod assembly
33. Remove flywheel and rear plate. Be careful not to drop it.
34. Gradually loosen main bearing cap bolts in two or three stages and remove caps. See Figure EM-13.

Fig. EM-13 Main bearing cap bolt loosening sequence
35. Remove rear oil seal.

EM459
Fig. EM-14 Removing rear oil seal
36. Carefully lift out crankshaft.
37. Remove main bearings from block and bearing caps.
38. Remove baffle plate and steel net.

EM460
Fig. EM-15 Removing baffle plate and steel net
39. Remove camshaft plate. Carefully remove camshaft by pulling it toward the front of engine.

Fig. EM-16 Camshaft plate
40. Remove valve lifters and keep them in order.

PISTON AND CONNECTING ROD

1. Remove piston rings with a ring remover.

Note: Avoid damaging piston rings by spreading excessively.
This would make them unfit for further service due to breakage or weakened tension.

EM292
Fig. EM-17 Removing piston ring
2. Press out piston pin with Piston Pin Press Stand ST 13040000.

EM103
Fig. EM-18 Removing piston pin

Caution: Make sure press ram, piston pin and press stand are lined up properly.
3. Keep disassembled parts in order.

CYLINDER HEAD

1. Using Valve Lifter ST12070000, compress valve spring and remove valve collet.
2. Release Valve Lifter and remove spring retainer, spring, oil seal, spring seat and valve.

EM462
Fig. EM-19 Removing valve
3. Place valve components in order.

Note: Be careful not to lose valve collet and spring seat.

INSPECTION AND REPAIR

CONTENTS

PREPARATION FOR INSPECTION EM- 8	
CYLINDER HEAD AND VALVES CHECKING CYLINDER HEAD MATING	
FACE	
VALVE ASSEMBLY	
VALVE SPRING	
VALVE ROCKER ARM AND SHAFT	
VALVE LIFTER AND PUSH ROD	
VALVE GUIDE	
VALVE SEAT	
CAMSHAFT AND CAMSHAFT BEARING	
CAMSHAFT BEARING CLEARANCE	M-12
CAMSHAFT ALIGNMENT	
CYLINDER BLOCK	M-14
HOW TO MEASURE CYLINDER BORE	EM-15
CYLINDER BORING	-15

PREPARATION FOR INSPECTION

1. Before cleaning, check for signs of water and oil leaks in cylinder block and head.
2. Clean oil and carbon deposits from all parts. They should be free of gaskets and sealant.
3. Clean all oil holes with solvent and dry with compressed air. Make sure they are not restricted.

CYLINDER HEAD VALVES

CHECKING CYLINDER head mating face

1. Measure surface of cylinder head (on cylinder block side) for warpage. If beyond designated limit, regrind surface with a surface grinder until cylinder head is flat within standard value.

Fig. EM-20 Checking cylinder head surface

Head surface flatness

Standard	Limit
less than	0.1 mm
$0.05 \mathrm{~mm}(0.0020 \mathrm{in})$	$(0.0039 \mathrm{in})$

Surface grinding limit

The grinding limit of cylinder head is dependent upon the engine cylinder block grinding.

Depth of cylinder head grinding is "A"

Depth of cylinder block grinding is "B"
The limit is:
$A+B=0.2 \mathrm{~mm}(0.0079 \mathrm{in})$

VALVE ASSEMBLY

1. Check valve collets and spring retainers for wear or damage.
2. Check each intake and exhaust valve for wear, damage or deformed stems. Repair or replace valve, if required.

EM110
Fig. EM-21 Checking valve stem diameter

3. The valve face or valve stem end surface should be refaced with a valve grinder.

Fig. EM-23 Grinding valve face

Caution: When grinding valves, don't wear gloves and set stand in radial direction of grinder.

Note: When valve head has been reduced to thickness of 0.5 mm (0.020 in) or less, replace. Grinding allowance for valve stem end surface is $0.5 \mathrm{~mm}(0.020 \mathrm{in})$ or less.

VALVE SPRING

1. Check valve spring for squareness using a steel square and surface plate. If spring is out of square (" S " in Figure EM-24) beyond specified limit, replace.
2. Measure free length and tension of each spring. If measured value exceeds specified limit, replace spring.

Unit: mm (in)
Fig. EM-22 Valve specifications

Valve spring specifications

	A10	A12
Valve spring free length $\quad \mathrm{mm}$ (in)	45.7 (1.799)	46.5 (1.831)
Valve spring compressed length (valve open) $\quad \begin{aligned} & \mathrm{mm} / \mathrm{kg} \\ & (\mathrm{in} / \mathrm{lb})\end{aligned}$	$\begin{gathered} 31.0 / 61.2 \\ (1.22 / 135) \end{gathered}$	$\begin{gathered} 30.2 / 58.5 \\ (1.19 / 129) \end{gathered}$
$\begin{aligned} & \text { Valve spring assembled height } \\ & \begin{array}{ll} \text { (valve closed) } & \mathrm{mm} / \mathrm{kg} \\ (\mathrm{in} / \mathrm{lb}) \end{array} \end{aligned}$	$\begin{aligned} & 38.5 / 30 \\ & (1.52 / 66.1) \end{aligned}$	$\begin{aligned} & 38.7 / 23.9 \\ & (1.52 / 52.7) \end{aligned}$
Valve spring out of square ("S") mm (in)	1.3 (0.051)	

VALVE ROCKER ARM AND SHAFT

1. Check rocker arm bore and shaft for scores or scuffs.
2. Check clearance between each rocker arm and shaft by measuring inner diameter of rocker arm bore and outer diameter of shaft.

If either clearance is not within specification, replace rocker arm and/or shaft.
3. Check valve end contact surface of rocker arm for abnormal wear or scuffs.

When a stepped wear occurs on valve contact surface of valve rocker arm, repair with a valve grinder or replace valve rocker arm.

Grinding allowance is 0.5 mm (0.0197 in) or less.

Valve rocker arm and shaft specifications

Rocker shaft outer diameter mm (in)	19.979 to 20.000 $(0.7866$ to 0.7874$)$	
Rocker arm to rocker shaft clearance	mm (in)	0.020 to 0.054 $(0.0008$ to 0.0021$)$
Rocker arm bore diameter	mm (in)	20.020 to 20.033 $(0.7882$ to 0.7887$)$

VALVE LIFTER AND PUSH ROD

1. Check valve lifter for wear or scuffs. Check bottom end of valve lifter to make sure it has a slight convex. Replace valve lifters that are scored, worn or have unsmooth bottom.
2. Check clearance between lifter
hole on cylinder block and valve lifter. Replace valve lifter if clearance exceeds wear limit.
3. Check push rod for bending and damage.

Check end of push rod for roughness or excessive wear.
2. As an emergency expedient, push valve in valve guide and move to left and right. If its tip deflects about 0.2 $\mathrm{mm}(0.0079 \mathrm{in})$ or more, clearance between stem and guide exceeds maximum wear limit of $0.1 \mathrm{~mm}(0.0039$ in).
Note: Valve should be moved parallel to rocker arm. (Generally, a large amount of wear occurs in this direction.)

INTAKE

8.3 to 8.5 (0.3268 to 0.3346) dia.

COMBUSTION CHAMBER SIDE Unit: mm (in)

EM562
Fig. EM-26 Service valve guide dimensions

Valve guide specifications

	Intake	Exhaust	Wear limit
Guide to guide hole interference mm (in)	$\begin{gathered} 0.022 \text { to } 0.044 \\ (0.0009 \text { to } 0.0017) \end{gathered}$		-
Valve guide inner diameter mm (in)	$\begin{array}{r} 8.000 \\ (0.315 \end{array}$	$\begin{aligned} & 8.015 \\ & 0.3156) \end{aligned}$	-
Guide to stem clearance $\quad \mathrm{mm}$ (in)	$\begin{gathered} 0.015 \text { to } 0.045 \\ (0.0006 \text { to } 0.0018) \end{gathered}$	$\begin{gathered} 0.040 \text { to } 0.070 \\ (0.0016 \text { to } 0.0028) \end{gathered}$	0.1

Replacement of valve guide

Oversize valve guide of 0.2 mm (0.0079 in) diameter is available for replacement.

Guide hole inner diameter $\mathrm{mm}(\mathrm{in})$	Service valve guide	12.200 to 12.211 dia. $(0.4803$ to 0.4807 dia.$)$
Interference fit of valve guide to guide hole mm (in)	0.022 to 0.044 $(0.0009$ to 0.0017$)$	

1. To remove old guides, use a drift and a press, and drive them out of rocker cover side toward combustion chamber (under 2 -ton pressure). Heating cylinder head will facilitate operation.

Fig. EM-28 Driving valve guide out of cylinder head
2. Ream cylinder head valve guide hole using Reamer ST11081000 [12.2 $\mathrm{mm}(0.480 \mathrm{in})$ dia.] at room temperature.

Unit: mm (in)
EM469
Fig. EM-29 Finish of valve guide hole when oversize valve guide

Fig. EM-30 Pressing valve guide
3. Carefully press service valve guide into cylinder head guide hole. It will fit smoothly after heating cylinder head to 150 to $200^{\circ} \mathrm{C}$ (302 to $392^{\circ} \mathrm{F}$). 4. Ream bore with valve guide pressed in using Reamer ST11032000 [8 $\mathrm{mm}(0.315 \mathrm{in})$ dia.].

Reaming bore:
8.000 to 8.015 mm
(0.3150 to 0.3156 in)

Fig. EM-31 Reaming valve guide
5. Reface valve seat with new valve guide as the axis.

VALVE SEAT

Check valve seat for evidence of pitting at valve contact surface, and reface or replace if worn excessively.

Valve seat insert of $0.5 \mathrm{~mm}(0.020$ in) oversize is available for service.

Refacing valve seat

When width of valve seat is wide or narrow beyond specifications, it should be refaced with valve seat with cutter or grinding stone.

Fig. EM-32 Refacing valve seat with valve seat cutter

Replacing valve seat insert

1. Old insert can be removed by boring out until it collapses. Machine depth stopper should be set so that boring cannot continue beyond the bottom face of the insert recess in cylinder head.
2. Machine cylinder head recess in concentric circles to valve guide center so that insert will have correct fit.
3. Ream cylinder head recess at room temperature.

Unit: mm (in)

Intake	Cylinder head recess diameter	Interference fit
	37.500 to 37.516 $(1.4764$ to 1.4770$)$	0.064 to 0.096 $(0.0025$ to 0.0038$)$

4. Heat cylinder head to temperature of 150 to $200^{\circ} \mathrm{C}$ (302 to $392^{\circ} \mathrm{F}$). 5. Fit insert ensuring that it seats on bottom face of its recess.

Unit: mm (in)
6. Newly fitted valve seat should be cut or ground with suitable seat cutter or grinding stone.

Exhaust
EM564
Fig. EM-33 Valve seat dimensions
7. Apply small amount of fine grinding compound to valve contacting face and put valve into guide. Lap valve against its seat until proper valve seating is obtained.

Remove valve and clean valve and valve seat.

CAMSHAFT AND CAMSHAFT BEARING

CAMSHAFT BEARING CLEARANCE

Journal diameters should be checked with a micrometer, and bearings with an inside dial gauge. Measurements should then be compared to determine whether bearings are worn. If worn beyond 0.15 mm (0.0059 in), replace using Camshaft Bearing Drift ST16110000.

Fig. EM-34 Measuring camshaft bearing inner diameter

Notes:

a. In press-fitting a new bearing, make certain that oil holes in block and bearing are properly aligned.
b. After replacing all bearings, finish bearing inner diameters by line boring.
c. Install welch plug into cylinder block, applying sealant.

EM475
Fig. EM-35 Replacing camshaft bearings

Camshaft journal and bearing specifications

Unit: mm (in)

CAMSHAFT ALIGNMENT

1. Check camshaft, camshaft journal and cam surface for bending, wear or damage. If fault is beyond limits, replace affected parts.
2. A bend value is one-half of the reading obtained when camshaft is turned one full revolution with a dial gauge applied to the center journal.

Fig. EM-36 Checking camshaft bend
3. Camshaft end play can be checked by installing camshaft, camshaft locating plate and camshaft sprocket in their respective positions. End play can then be checked with a dial gauge or feeler gauge. If end play exceeds 0.10 mm (0.0039 in), replace locating plate.

EM477
Fig. EM-37 Checking camshaft end play

Camshaft specifications

Camshaft specifications		Unit: mm (in)
	Standard	Wear/repair limit
Camshaft bend		Less than $0.015(0.0006)$
Cam height	Intake	36.200 to 36.250 $(1.4252$ to 1.4272$)$
	Exhaust	36.930 to 36.980 $(1.4539$ to 1.4559$)$
Difference in diameter max. worn and min. worn parts of camshaft journal	0.03 to 0.07 $(0.0012$ to 0.0028$)$	$0.10(0.4055)$

CYLINDER BLOCK

1. Check flatness of block gasket surface with a straight edge and feeler gauge at two diagonal and five longitudinal positions.
2. Place straight edge along diagonal lines of block plane and longitude, and inspect for level with a feeler gauge.

Fig. EM-38 Checking cylinder block surface

Surface flatness
Unit: mm (in)

Standard	Limit
Less than $0.05(0.0020)$	$0.1(0.0039)$

Surface grinding limit

Grinding limit of cylinder block is dependent upon cylinder head grinding of engine.

Depth of cylinder head grinding is "A"

Depth of cylinder block grinding is "B"

The limit is:

$$
A+B=0.2 \mathrm{~mm}(0.008 \mathrm{in})
$$

3. With bore gauge, measure cylinder bore for out-of-round or taper. If out-of-round or taper is excessive, rebore cylinder walls with a boring machine. Measurement should be taken along bores for taper and around bores for out-of-round. See Figure EM-40.

Fig. EM-39 Measuring cylinder bore diameter
4. When wear, taper, or out-ofround is minor and within limits remove ridge at topmost portion of cylinder using a ridge reamer or similar tool.

HOW TO MEASURE CYLINDER BORE

With a bore gauge, measure cylinder bore at top, middle and bottom positions in X and Y directions as shown in Figure EM-40 and record measured values.

Unit: mm (in) EM565
Fig. EM-40 Cylinder bore measuring positions

Cylinder bore specifications

		Unit: mm (in)	
Cylinder bore	Standard	Wear limit	
	Inner diameter	73.000 to 73.050 $(2.8740$ to 2.8760$)$	$0.20(0.0079)$
	Out-of-round	Less than $0.015(0.0006)$	
	Taper	$0.05(0.0020)$	$0.20(0.0079)$
Difference in cylinder bore between cylinders			

CYLINDER BORING

1. When any cylinder needs boring, all other cylinders must also be bored at same time.

Piston for service

> Unit: mm (in)

		Piston diameter
Standard	72.987 to $73.037(2.8735$ to 2.8755$)$	
	$0.50(0.0197)$	73.467 to $73.517(2.8924$ to 2.8944$)$
	$1.00(0.0394)$	73.967 to $74.017(2.9121$ to 2.9140$)$
	$1.50(0.0591)$	74.467 to $74.517(2.9318$ to 2.9337$)$

3. The size to which cylinders must be honed is determined by adding piston-to-cylinder clearance to the
4. Determine piston oversize according to amount of cylinder wear.

Calculation of cylinder bore diameter to be machined
$\mathrm{D}=\mathrm{A}+\mathrm{B}-\mathrm{C}=\mathrm{A}+[0.003$ to $0.023 \mathrm{~mm}(0.0001$ to 0.0009 in$)$]
Where
D: Cylinder bore diameter to be machined
A: Piston diameter as measured
B: Piston to cylinder bore clearance $=0.023$ to 0.043 mm (0.0009 to 0.0017 in)
C : For honing allowance $=0.02$ $\mathrm{mm}(0.0008 \mathrm{in})$

Note: To prevent strain due to cutting
heat, bore cylinders in order 2-4-1-3 or 3-1-4-2.
4. Do not cut too much out of cylinder bore at a time. Cut 0.05 mm (0.0020 in) or so at a time.
5. Measurement of cylinder bore just machined requires the utmost care since it is expanded by cutting heat.
6. As a final step, cylinders should be honed to final size.
7. Measure finished cylinder bore for out-of-round or tapered part.
8. Measure piston to cylinder clearance.

This clearance can be checked easily with a feeler gauge and a spring balance hooked on feeler gauge, measuring amount of force required to pull out gauge from between piston and cylinder.

EM379
Fig. EM-43 Measuring piston fit in cylinder

Notes:
a. When measuring clearance, slowly pull feeler gauge straight upward.
b. It is recommended that piston and cylinder be warmed to $20^{\circ} \mathrm{C}$ $\left(68^{\circ} \mathrm{F}\right)$.

Unit: mm (in)

Standard clearance	0.023 to 0.043 $(0.0009$ to 0.0017$)$
Feeler gauge	$0.03(0.0012)$
Extracting force	0.5 to 1.5 $(0.020$ to 0.059$)$

Note: If cylinder bore has worn beyond the wear limit, use cylinder liner.
Undersize cylinder liners are available for service.
Interference fit of cylinder liner in cylinder block should be 0.08 to 0.09 mm (0.0031 to 0.0035 in).

Cylinder liner for service
Unit: mm (in)

$4.0(0.157)$	Undside diameter	Inside diameter	
	Undersize	77.00 to 77.05 $(3.0315$ to 3.0335$)$	77.50 to 72.60 $(2.8543$ to 2.8583$)$
$5.0(0.197)$ to 77.55	72.50 to 72.60 $(2.8512$ to 3.0531$)$	Undersize	78.00 to 78.05 $(3.0709$ to 3.0728$)$

PISTON, PISTON
 PINS AND PISTON RINGS

1. Remove carbon from piston and ring grooves with a carbon scraper and a curved steel wire. The wire will be useful in cleaning bottom land of ring groove. Clean out oil slots in bottom land of oil ring groove.
2. Check for damage, scratches and wear. Replace if fault is detected.
3. Measure side clearance of rings in ring grooves as each ring is installed. Clearance with new pistons and rings should be as follows.

EM481
Fig. EM-44 Measuring piston ring side clearance
4. Push ring into cylinder with a piston so as to place it squarely in cylinder; measure ring gap with a feeler gauge. Ring should be placed to diameter at upper or lower limit of ring travel.

EM482
Fig. EM-45 Measuring ring gap

Notes:

a. When only piston ring is to be replaced, without cylinder bore being corrected, measure gap at bottom of cylinder where wear is minor.
Proper ring fit in ring groove is very important for proper performance and long life. A sticky ring causes blow-by or oil-up, resulting in premature wear on ring and cylinder wall. If it is too loose, this accelerates wear on sides of ring groove to aggravate ring play.
b. Oversize piston rings are available. [$0.5 \mathrm{~mm}(0.020 \mathrm{in}), 1.0 \mathrm{~mm}(0.039$ in) oversize]

Side clearance			Ring gap		
	Standard mm (in)	Wear limit mm (in)		Standard mm (in)	Wear limit mm (in)
Top ring	$\begin{gathered} 0.04 \text { to } 0.07 \\ (0.0016 \text { to } 0.0028) \end{gathered}$	0.20 (0.0079)	Top ring	$\begin{gathered} 0.20 \text { to } 0.35 \\ (0.0079 \text { to } 0.0138) \end{gathered}$	1.00 (0.0394)
2nd ring	$\begin{gathered} 0.04 \text { to } 0.07 \\ (0.0016 \text { to } 0.0028) \end{gathered}$	0.20 (0.0079)	2nd ring	$\begin{gathered} 0.20 \text { to } 0.35 \\ (0.0079 \text { to } 0.0138) \end{gathered}$	1.00 (0.0394)
Oil ring	$\begin{gathered} 0.04 \text { to } 0.08 \\ (0.0016 \text { to } 0.0031) \end{gathered}$	0.20 (0.0079)	Oil ring	$\begin{gathered} 0.30 \text { to } 0.90 \\ (0.0118 \text { to } 0.0354) \end{gathered}$	1.00 (0.0394)

5. Measure piston pin hole in relation to the outer diameter of pin. If wear exceeds limit, replace piston pin together with piston on which it is installed.

EM132
Fig. EM-46 Measuring piston pin diameter
6. Determine fitting of piston pin into piston pin hole to such an extent that it can be finger pressed at room temperature. This piston pin must be a tight press fit into connecting rod.

Fig. EM-47 Piston pin fitting

Piston pin diameter	$\mathrm{mm}(\mathrm{in})$	17.447 to $17.452(0.6869$ to 0.6871$)$
Piston pin hole diameter	$\mathrm{mm}(\mathrm{in})$	17.453 to $17.460(0.6871$ to 0.6874$)$
Interference fit of piston pin to connecting rod	$\mathrm{mm}(\mathrm{in})$	$0.020(0.0008)$

CONNECTING ROD

1. If a connecting rod has any flaw on either side of thrust face and large end, correct or replace it.

Fig. EM-48 Checking rod alignment
2. Check connecting rod for bend or torsion using a Connecting Rod Aligner EMO440000. If bend or torsion exceeds limit, correct or replace.
If bend or torsion exceeds limit, correct or replace.
3. When replacing connecting rod, select rod so weight difference between new and old ones is within 5 gr (0.176 oz).
4. Install connecting rods with bearings on to corresponding crank pins and measure thrust clearance. If measured value exceeds limit, replace connecting rod.

EM483
Fig. EM-49 Checking big end play

		Standard	Repair/replace limit
Connecting rod	Bend (per 100 mm or 3.94 in :length)	$\begin{aligned} & \text { Less than } 0.05 \\ & (0.0020) \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.0039) \end{aligned}$
	Torsion (per 100 mm or 3.94 in :length)	$\begin{aligned} & \text { Less than } 0.07 \\ & (0.0028) \end{aligned}$	
	Big end play	$\begin{aligned} & 0.2 \text { to } 0.3 \\ & (0.008 \text { to } 0.012) \end{aligned}$	$\begin{aligned} & 0.4 \\ & (0.016) \end{aligned}$

CRANKSHAFT

1. Whenever crankshaft is removed from engine, it should be cleaned thoroughly in a suitable solvent. After cleaning, check crankshaft journal and crank pin in a suitable solvent. After cleaning, check crankshaft journal and crank pin for score, bias wear or cracks. Repair or replace as required. If fault is minor, dress with fine crocus cloth.
2. Check journals and crank pins for taper and out-of-round with micrometer. Measurement should be taken along journals for taper and around journals for out-of-round. See Figure EM-50 for detailed information.

Out-of-round	$\mathrm{X}-\mathrm{Y}$
Taper	$\mathrm{A}-\mathrm{B}$

Unit: mm (in)
EM484
Fig. EM-50 Crankshaft dimensions

If journal or crank pins are tapered or out-of-round beyond limits, replace with a new shaft.
3. Crankshaft can be checked for bend by placing it on V-blocks and using a dial gauge with its indicating finger resting on center journal.

EM137
Fig. EM-51 Checking crankshaft bend

	Standard	Repair/replace limit
Taper and out-of-round of journal and crank pin mm (in)	Less than 0.01 (0.0004)	0.03
$\mathbf{(0 . 0 0 1 2)}$		
Crankshaft bend	Less than 0.015 mm (in)	(0.0006)

Note: When measuring bend, use a dial gauge. Bend value is half of reading obtained when crankshaft is turned one full revolution with a dial gauge attached to its center journal.
4. After regrinding crankshaft, finish it to the necessary size indicated on page EM- 20 by using an adequate undersize bearing according to extent of required repair.
5. After grinding journals or crank
pins, crankshaft should be checked for end play. This can be done by installing shaft in engine block with main bearings and bearing caps torqued to 5.0 to $6.0 \mathrm{~kg}-\mathrm{m}$ (36 to $43 \mathrm{ft}-\mathrm{lb}$). Without disturbing above setting, bar crankshaft as far endwise as possible and insert a feeler gauge in clearance between crankshaft thrust face and main bearing thrust flange.

EM486
Fig. EM-52 Checking crankshaft end play

	Standard	Wear limit
Crankshaft free end play mm (in)	0.05 to 0.15 $(0.0020$ to 0.0059)	0.30 (0.0118)

6. In case of B210 and B120, check crankshaft pilot bushing at the rear end of crankshaft for wear or damage. Replace if fault is detected.

To replace crankshaft rear pilot bushing proceed as follows:
(1) Pull out bushing using Pilot Bushing Puller ST16680001.

Fig. EM-53 Pulling out pilot bushing
(2) Before installing a new bushing, thoroughly clean bushing hole. Press fit bushing so its height above flange end is $2.8 \mathrm{~mm}(0.110 \mathrm{in})$. Do not oil bushing.

Fig. EM-54 Press-fitting new pilot bushing

BUSHING AND BEARING

MEASURING MAIN BEARING CLEARANCE

1. Thoroughly clean all bearings. Check for scratches, melt, score or wear.

Replace bearings, if fault is detected.
2. Crankshaft journals and bearings should be clean and free from dust and dirt before oil clearance is measured.

Fig. EM-55 Plastigage
3. Set main bearing on cap block.
4. Cut a plastigage to width of bearing and place it in parallel with crank pin, clear of oil hole. Install cap on assembly and tighten them together to specified torque.

Tightening torque:
5.0 to $6.0 \mathrm{~kg} \cdot \mathrm{~m}$ (36 to $43 \mathrm{ft}-\mathrm{lb}$)

Note: Do not turn crankshaft while plastigage is being inserted.
5. Remove cap, and compare width of plastigage at widest part with scale printed in plastigage envelope.

Fig. EM-56 Measuring bearing clearance

MEASURING CONNECTING ROD BEARING CLEARANCE

1. Measure connecting rod bearing clearance in same manner as above.

Connecting rod big end nut tightening torque:

A12
3.2 to $3.8 \mathrm{~kg} \cdot \mathrm{~m}$
(23 to $27 \mathrm{ft}-\mathrm{lb}$)
A10
3.0 to $3.6 \mathrm{~kg} \cdot \mathrm{~m}$
(22 to $26 \mathrm{ft}-\mathrm{lb}$)

When new bearings are used bearing fit, or more specifically, oil clearance should always be inspected. If it exceeds 0.10 mm (0.0039 in) (maximum), correct undersize bearings. should be selected or journals should be ground to fit next undersize bearings.

Note: Since bearings are precision insert type, it is not necessary to file bearing caps or to grind bearing surfaces with an emery cloth to correct bearing clearance.

Bearing oil clearance

	Standard	Wear limit
Main bearing clearance	0.020 to 0.062 $(0.0008$ to 0.0024$)$	$0.10(0.0039)$
	0.020 to 0.050 $(0.0008$ to 0.0020$)$	

Finish of crank journal when undersize main bearings

Unit: mm (
Main bearing	rsize	Crank journal diameter
Standard size		$\begin{aligned} & 49.951 \text { to } 49.964 \\ & (1.9666 \text { to } 1.9671) \end{aligned}$
Undersize	0.02 (0.0008)	$\begin{aligned} & 49.949 \text { to } 49.962 \\ & (1.9665 \text { to } 1.9670) \end{aligned}$
	0.25 (0.0098)	$\begin{aligned} & 49.701 \text { to } 49.714 \\ & (1.9567 \text { to } 1.9572) \end{aligned}$
	0.50 (0.0197)	$\begin{aligned} & 49.451 \text { to } 49.464 \\ & (1.9469 \text { to } 1.9474) \end{aligned}$
	0.75 (0.0295)	$\begin{aligned} & 49.201 \text { to } 49.214 \\ & (1.9370 \text { to } 1.9376) \end{aligned}$
	1.00 (0.0394)	$\begin{aligned} & 48.951 \text { to } 48.964 \\ & \text { (1.9272 to } 1.9277 \text {) } \end{aligned}$

Finish of crank journal when undersize connecting rod bearings

Unit: mm (in)

Connecting rod bearing undersize		Crank pin diameter
Standard size	44.961 to $44.974(1.7701$ to 1.7706$)$	
	$0.25(0.0098)$	44.711 to $44.724(1.7603$ to 1.7608$)$
	$0.50(0.0197)$	44.461 to $44.474(1.7504$ to 1.7509$)$
	$0.75(0.0295)$	44.211 to $44.224(1.7406$ to 1.7411$)$

MISCELLANEOUS COMPONENTS

CRANKSHAFT SPROCKET AND CAMSHAFT SPROCKET

1. Check tooth surface for flaws or wear. Replace sprocket if fault is found.
2. Install camshaft sprocket in position and check for runout. If exceeds 0.1 mm (0.004 in) total indicator reading, replace camshaft sprocket.

EM309
Fig. EM-57 Checking camshaft sprocket runout

CHAIN AND CHAIN TENSIONER

1. Check chain for stepped wear, scratches or other problems on roller links. Replace if necessary.
2. Check chain tensioner for wear, breakage or any other fault which would interfere with proper chain function. Replace if necessary.

FLYWHEEL

1. Check ring gear. If worn or damaged excessively, replace.
2. Clutch contacting face of flywheel should be smooth. If worn, damaged or roughened beyond limits repair or replace.
3. Measure flywheel for runout. This can be checked with a dial gauge, by rotating it in either direction with indicating finger resting on flywheel face farthest from center. If runout exceeds $0.2 \mathrm{~mm}(0.008 \mathrm{in})$, replace flywheel.

Fig. EM-58 Checking flywheel runout
Note: Removal and installation of ring gear requires use of hydraulic
press. It is also necessary to heat ring gear to 180 to $200^{\circ} \mathrm{C}$ (356 to $392^{\circ} \mathrm{F}$) thus facilitating removal and installation. Do not heat ring gear to more than $300^{\circ} \mathrm{C}\left(572^{\circ} \mathrm{F}\right)$. To do so could result in impaired hardness of ring gear.

CRANKSHAFT FRONT AND REAR OIL SEAL

First check rear oil seal for worn or folded over sealing lip or oil leakage. If necessary, replace with a new seal.

Notes:

a. When installing a new seal, pay attention to mounting direction.
b. It is good practice to renew oil seal whenever engine is overhauled.
c. Don't apply grease to oil seal groove.

Fig. EM-59 Crankshaft oil seal

CONTENTS

```
PRECAUTION
CYLINDER HEAD
PISTON AND CONNECTING ROD ........... EM-22
    E ......... EM-22
```


PRECAUTION

Before assembling engine, observe following precautions:

1. Clean all disassembled parts with clean solvent. All oil holes in crankshaft, camshaft, valve rocker shaft, etc.
should be thoroughly cleaned to remove all traces of grinding chips or lint. Always use clean solvent.
2. In general, used gaskets, packings and oil seals should be replaced.
3. Under no circumstances should lockwashers be reused.
4. Place bolts, nuts and washers back in their original parts or from which they were removed.
5. Most packings serve best when liquid packing is applied to sealing surfaces. When designated, use suitable liquid packing to eliminate possibility of water, oil and gas leak.
6. Prior to assembling, all sliding surfaces should be liberally oiled.
7. Proper tightening is essential to successful performance of all car repairs. It is also important to follow correct tightenig sequence in pulling up cylinder head. Be on alert at all times to amount of clearance permitted.
8. Cleanliness of tools or parts such as work bench used in making a repair is essential. When setting up a job every precaution should be taken that tools or parts are free of dirt, mud and oil. Do not work in dust and grit, for they are primary cause of wear in any engine.

CYLINDER HEAD

1. When installing service lip seal, insert valve spring seat into valve guide. Install valve lip seal by lightly tapping its head with a plastic hammer through Valve Lip Seal Drift ST11100000.

Fig. EM-60 Installing valve lip seal
2. Insert valve into valve guide.
3. Insert valve spring seat and install shroud.
4. Install valve spring and valve spring retainer. Compress valve spring with Valve Lifter ST12070000 and fit valve collets in place. Release Valve Lifter slowly. Refer to page EM-7 for Cylinder Head Disassembly.

Notes:
a. Do not interchange valves between cylinders, for their sliding or seating surfaces have undergone wearing-in or have been lapped at assembly, forming specific contact with mating parts.
b. Check to be sure that valves are properly seated on valve seats without foreign particles stuck in between.
c. Valve spring is an uneven pitch type. Install spring facing white painted side to cylinder head surface.

Fig. EM-61 Valve spring

PISTON AND CONNECTING ROD

1. Assemble pistons, piston pins and connecting rods to designated cylinder. Refer to page EM-7 for Piston Pin Removal.

Fig. EM-62 Arranging piston and connecting rod

Notes:

a. Piston is pressed into connecting rod. Fitting force is from 1 to 3 tons and aid of Piston Pin Press Stand ST13040000 is necessary.
When pressing piston pin in connecting rod, apply engine oil to pin and small end of connecting rod.
b. Arrange so oil jet hole of connecting rod big end is directed toward right side of cylinder block.
c. Be sure to install piston in cylinders with stamped number of piston head toward front of engine.
2. Install piston rings

Install top and second rings in right position, with marked side up.

Notes:

a. Top ring is chromium-plated on cylinder wall contacting face.
b. Second ring has larger taper surface than top ring.
c. In combined oil ring, upper rail is same as lower one.

EM158
Fig. EM-63 Installing piston ring
3. Fix bearings on connecting rod and connecting rod cap.
Note: Clean their mating surface.

VALVE ROCKER SHAFT ASSEMBLY

Install parts in reverse order of disassembly.

ENGINE ASSEMBLY

1. The first step in engine assembly is to bolt Engine Attachment ST05200000 to right hand side of cylinder block. In succession, install block in Engine Stand ST0501S000 with engine bottom up.
2. Apply a light coat of engine oil to sliding surfaces of valve lifters; insert lifters in holes in cylinder block.
3. To install camshaft, be sure to coat sliding surfaces of camshaft bushings with a light coat of engine oil. Insert camshaft in cylinder block from front side of engine, exercising care not to damage camshaft bushings.
4. Install camshaft locating plate and torque attaching bolts to 0.4 to $0.5 \mathrm{~kg}-\mathrm{m}$ (2.9 to $3.6 \mathrm{ft}-\mathrm{lb}$), using a suitable torque wrench.
Note: Set locating plate so as the "Lower" mark comes to engine bottom side.

Fig. EM-64 Installing camshaft locating plate
5. Install baffle plate and steel net.
6. Set main bearings at proper portion of cylinder block and caps.

EM492
Fig. EM-65 Main bearings and caps

Notes:

a. Center bearing (No. 3 bearing for A12 engine and No. 2 bearing for A10 engine) is a flanged type to cope with thrust force.
b. Two inner bearings (No. 2 and No. 4 for A12 engine) are the same.
c. Front bearing (No. 1) is the same in type as rear bearing (No. 5 for A12 engine and No. 3 for A10 engine).
d. All bearings except No. 1, No. 3 and No. 5 bearings for A12 engine are interchangeable between upper and lower bearings. Make certain that bearings with oil holes are
installed on cylinder block.
e. Bearings for A10 and A12 engines are not interchangeable.
7. Apply engine oil to main bearing surfaces on both sides of cylinder block and cap.

Install crankshaft.
8. Install main bearing cap and tighten bolts to specified torque.

Tightening torque:
5.0 to $6.0 \mathrm{~kg}-\mathrm{m}$ (36 to $43 \mathrm{ft}-\mathrm{lb}$)

Notes:

a. Apply seal to each rear main bearing contact corner of cylinder block as shown in Figure EM-66.

Fig. EM-66 Applying sealant
b. Arrange parts so arrow mark on bearing cap faces toward front of engine.
c. Prior to tightening bearing cap bolts, place bearing cap in proper position by shifting crankshaft in axial direction.
d. Tighten bearing cap bolts gradually in two to three stages outwardly from center bearing in the sequence shown in Figure EM-67.
e. After securing bearing cap bolts, ascertain that crankshaft turns smoothly.

EM494
Fig. EM-67 Torque sequence of cap bolts
9. Make sure there is proper end play at crankshaft.

For inspection procedure, refer to instructions under heading "Crankshaft".
10. Install rear oil seal using suitable drift. Apply engine oil to sealing lip of oil seal.

Fig. EM-68 Installing rear oil seal

Note: Make sure that oil seals are properly installed in their locations.
11. Install rear plate.
12. Install flywheel securely, and tighten bolts to specified torque.

Tightening torque:
A12
6.5 to $7.5 \mathrm{~kg}-\mathrm{m}$
(47 to $54 \mathrm{ft}-\mathrm{lb}$)
A10
5.0 to $6.0 \mathrm{~kg}-\mathrm{m}$
(36 to $43 \mathrm{ft}-\mathrm{lb}$)

Fig. EM-69 Installing flywheel

Note: Tighten bolts in a criss-cross fashion.
13. Rotate engine quarter turn and install piston-rod assembly using Piston Ring Compressor EM03470000.

Fig. EM-70 Installing piston rod assembly

Notes:

a. Insert pistons in corresponding cylinders.
b. Apply engine oil to sliding parts.
c. Arrange pistons so number stamped on piston head faces to front of engine.
d. Before installing piston, piston rings should be positioned as shown in Figure EM-71.

Fig. EM-71 Positioning piston ring gap
14. Apply engine oil to bearing surfaces.

Install connecting rod caps.

Tightening torque:
A12
3.2 to $3.8 \mathrm{~kg}-\mathrm{m}$
(23 to $27 \mathrm{ft}-\mathrm{lb}$)
A10
3.0 to $3.6 \mathrm{~kg}-\mathrm{m}$
(22 to $26 \mathrm{ft}-\mathrm{lb}$)

Fig. EM. 72 Tightening connecting rod cap

Note: Arrange connecting rods and connecting rod caps so cylinder numbers face in same direction.
15. Make sure there is proper end play at connecting rod big end.

For inspection procedure, refer to instructions under heading "Connecting rod".

Big end play:

$$
\begin{aligned}
& 0.2 \text { to } 0.3 \mathrm{~mm} \\
& (0.008 \text { to } 0.012 \mathrm{in})
\end{aligned}
$$

16. Insert crank sprocket keys in keyways of crankshaft. Install camshaft and crankshaft sprockets temporarily for adjustment of tooth height by using adjusting washers.

Height difference $\mathrm{mm}(\mathrm{in})$	less than $0.5(0.020)$
Adjusting washer thickness $\quad \mathrm{mm} \mathrm{(in)}$	$0.15(0.0059)$

EM500
Fig. EM-73 Adjusting sprocket tooth height
17. Install timing chain and camshaft sprocket with their markings properly aligned. Oil sprocket teeth and chain with engine oil.

EM501
Fig. EM-74 Aligning markings

Note: Make sure camshaft sprocket dowel hole and crankshaft sprocket key are in line and both dowel hole and key are located downward.
18. Tighten camshaft sprocket bolt to 4.0 to $4.8 \mathrm{~kg}-\mathrm{m}$ (29 to $35 \mathrm{ft}-\mathrm{lb}$) by means of suitable torque wrench.

Fig. EM-75 Tightening camshaft sprocket bolt
19. Install chain tensioner and tighten tensioner attaching bolts to 0.6 to $0.8 \mathrm{~kg}-\mathrm{m}$ (4.3 to $5.8 \mathrm{ft}-\mathrm{lb}$)
20. Check projection "L" of tensioner spindle.

Correct projection "L" is below 15 mm (0.591 in). Replace spindle when over this limit.

Fig. EM- 76 Checking projection of tensioner spindle
21. Correctly install oil thrower in front of camshaft sprocket.
22. Press new oil seal in timing chain cover. (Front cover oil seal should be replaced when front cover is disassembled.)
23. Install timing chain cover with gasket in place.

Note: Apply lithium grease to sealing lip of oil seal.

Timing chain cover bolts tightening torque:

> 0.5 to $0.7 \mathrm{~kg} \cdot \mathrm{~m}$
> (3.6 to $5.1 \mathrm{ft} \cdot \mathrm{lb}$)

Refer to page EM-6 for Chain Cover Removal.
24. Install water pump with gasket in place.

Water pump attaching bolts tightening torque:
0.9 to $1.4 \mathrm{~kg} \cdot \mathrm{~m}$
(6.5 to $10.1 \mathrm{ft}-\mathrm{lb}$)
25. Install crank pulley, then set No. 1 piston at T.D.C. on compression stroke.

Crank pulley nut
tightening torque:
15 to $20 \mathrm{~kg}-\mathrm{m}$
(108 to $145 \mathrm{ft}-\mathrm{lb}$)
26. Invert engine. Install oil strainer and oil pan using new gasket and oil seal.

Note: Give coating of sealant to seam between gasket and oil seal.

Oil pan bolt tightening torque: B210 \& B120
0.4 to $0.6 \mathrm{~kg}-\mathrm{m}$
(2.9 to $4.3 \mathrm{ft}-\mathrm{lb}$)
F10
1.5 to $1.9 \mathrm{~kg}-\mathrm{m}$
(11 to $14 \mathrm{ft}-\mathrm{lb}$)
28. Tighten cylinder head bolts.

Tightening torque:
A12
7.0 to $7.5 \mathrm{~kg}-\mathrm{m}$
(51 to $54 \mathrm{ft}-\mathrm{lb}$)

A10
6.0 to $6.5 \mathrm{~kg} \cdot \mathrm{~m}$
(43 to $47 \mathrm{ft}-\mathrm{lb}$)

Notes:

a. One of cylinder head bolts is smaller in diameter than others and has a hollow head. It should be installed on right side center of cylinder head.
b. Tightening should be made in two or three steps, finally torquing to specification.
c. Retighten cylinder head bolt to the above specified torque after engine has been warmed up.

EM505
Fig. EM-77 Cylinder head bolt tightening sequence
29. Apply engine oil to both ends of push rods and insert in proper sequence.
30. Apply engine oil to valve stem end and rocker arm contact surfaces. Position rocker shaft assembly on cylinder head.
31. Tighten rocker shaft bracket bolts to specified torque.

Tightening torque:
2.0 to $2.5 \mathrm{~kg} \cdot \mathrm{~m}$ (14 to $18 \mathrm{ft}-\mathrm{lb}$)

Note: Tightening should be done in two or three stages outwardly from center bracket.

EM506
Fig. EM-78 Rocker shaft bolt tightening sequence
32. Adjust valve clearance to specified value.

Notes:

a. First set clearance to 0.25 mm (0.0098 in) when engine is cold.
b. After engine has been assembled, warm it up for at least several minutes, finally adjust clearance to specification. For details, refer to Adjusting Intake and Exhaust Valve Clearance in ET Section (Page ET-3).

Fig. EM-79 Adjusting valve clearance

	Intake and Exhaust valves
Valve clearance (hot) $\mathrm{mm}(\mathrm{in})$	$0.35(0.0138)$

33. Install rocker cover.
34. Install intake, exhaust manifolds and carburetor assembly.

Tightening torque:
0.9 to $1.4 \mathrm{~kg}-\mathrm{m}$
(6.5 to $10.1 \mathrm{ft}-\mathrm{lb}$)
35. Install pipe connector to control valve hose and engine mounting bracket L.H.
36. Install distributor.

Notes;:
a. Be sure to set No. 1 piston to T.D.C. of compression stroke.
b. Before installation, return distributor rotor approximately 30 degrees from its correct position. Insert distributor, meshing distributor drive gear and driven gear.
c. After installation distributor rotor should align with mark on rotor cap.

EM566
Fig. EM-80 Correct position of rotor
37. Dismount engine from Engine Stand ST0501S000 and place it on suitable engine stand. (A12 engine)

Remove Engine Attachment ST05200000.
38. Install spark plugs, and engine mounting bracket R.H.
39. Install oil pump and filter assembly.
40. Install thermostat and thermostat housing.
41. Install fuel pump and fuel lines. Do not forget to install spacer and gasket.
42. Install distributor vacuum line. 43. Install distributor cap and high tension cables as an assembly. Connect high tension cables.
44. Insert oil level gauge.
45. Install fan, fan pulley and fan spacer.

Lock bolts by bending lock washers.
46. Install alternator bracket, adjusting bar fan belt and alternator.

Note: When installing alternator on bracket, add shim of proper thickness to take up clearance between alternator and bracket.

Fig. EM-81 Installing alternator
47. Check to be sure deflection of fan belt is held within 12 to 16 mm (0.473 to 0.630 in) when thumb pressure [$10 \mathrm{~kg}(22 \mathrm{lb})$] is applied midway between pulleys.

Fig. EM-82 Fan belt tension
48. Install clutch and cover assembly using Clutch Aligning Bar ST20610000.

For details, refer to Installation in CL Section.

Fig. EM-83 Installing clutch assembly
49. Dismount engine from Engine Stand ST0501S000 and place it on suitable engine stand. (A10 engine)

Remove Engine Attachment ST05270000.

SERVICE DATA AND SPECIFICATIONS

Valve mechanism

Valve clearance

(Cold)	Intake	mm (in)	0.25 (0.0098)
	Exhaust	mm (in)	0.25 (0.0098)
(Hot)	Intake	mm (in)	0.35 (0.0138)
	Exhaust	mm (in)	0.35 (0.0138)

Valve
Head diameter

Intake	mm (in) ..	37.0 to 37.2 (1.457 to 1.465$)$
Exhaust	mm (in)	30.0 to 30.2 (1.181 to 1.189)

Stem diameter
Intake $\quad \mathrm{mm}$ (in)
7.970 to $7.985(0.3138$ to 0.3144$)$

Exhaust $\quad \mathrm{mm}(\mathrm{in})$.. 7.945 to 7.960 (0.3128 to 0.3134)
Length
mm (in)
102.35 to 102.65 (4.030 to 4.041)

Valve spring

Out of square
mm (in)
1.3 (0.051)

Free length

A12	mm (in) ..	46.5 (1.831)
A10	mm (in)	45.7 (1.799)

Pressured length

A12	$\mathrm{mm} / \mathrm{kg}(\mathrm{in} / \mathrm{lb})$	30.2/58.5 (1.19/129)
A10	$\mathrm{mm} / \mathrm{kg}$ (in/lb)	31.0/61.2 (1.22/1

Valve guide
Length
Height from head surface
Inner diameter
Outer diameter
Interference fit
mm (in)
49 (1.929)
mm (in)
18 (0.709)
$\mathrm{mm}(\mathrm{in})$... 8.000 to 8.015 (0.3150 to 0.3156)
mm (in) ... 12.233 to 12.244 (0.4816 to 0.4820)

To stem clearance

Intake	mm (in) ..	0.015 to 0.045 (0.0006 to 0.0018$)$
Exhaust	mm (in)	0.040 to 0.070 (0.0016 to 0.0028$)$

Valve seat
Width

Intake	mm (in) ..	1.3 (0.051)
Exhaust	mm (in)	1.8 (0.071)

Angle	degree ...	90
Interference fit	mm (in) ..	0.064 to 0.096 (0.0025 to 0.0038$)$
Camshaft		
End play	mm (in) ...	0.01 to 0.05 (0.0004 to 0.0020)
Lobe lift $\begin{aligned} & \text { A10 } \\ & \\ & \text { A12 }\end{aligned}$	mm (in) \qquad mm (in) \qquad	$\begin{aligned} & 5.35(0.211) \\ & 5.65(0.222) \end{aligned}$
Cam height		
Intake	mm (in)	36.200 to 36.250 (1.4252 to 1.4272)
Exhaust	mm (in) ..	36.930 to 36.980 (1.4539 to 1.4559)
Journal diameter		
No. 1	mm (in) ..	43.783 to 43.976 (1.7237 to 1.7242)
No. 2	mm (in)	42.283 to 43.296 (1.6647 to 1.7046)
No. 3	mm (in)	42.783 to 42.796 (1.6844 to 1.6849)
No. 4	mm (in) ..	42.283 to 42.296 (1.6647 to 1.6652)
No. 5	mm (in) ...	41.208 to 41.221 (1.6224 to 1.6229)
Bend	mm (in) ..	Less than $0.015(0.0006)$
Journal to bearing clearance		
No. 1	mm (in)	0.037 to 0.060 (0.0015 to 0.0024$)$
No. 2	mm (in)	0.027 to 0.050 (0.0011 to 0.0020$)$
No. 3	mm (in) ..	0.040 to 0.063 (0.0016 to 0.0025)
No. 4	mm (in) ..	0.027 to $0.050(0.0011$ to 0.0020$)$
No. 5	mm (in) ...	0.037 to 0.060 (0.0015 to 0.0024$)$
Bearing inner diameter		
No. 1	mm (in) ..	43.833 to 43.843 (1.7257 to 1.7261)
No. 2	mm (in)	43.323 to 43.333 (1.7056 to 1.7060)
No. 3	mm (in) ..	42.836 to 42.846 (1.6865 to 1.6868)
No. 4	mm (in) ..	42.323 to 42.333 (1.6663 to 1.6667)
No. 5	mm (in) :...	41.258 to 41.268 (1.6243 to 1.6247)
Connecting rod		
Big end play	mm (in) ...	0.2 to 0.3 (0.008 to 0.012)
Bearing clearance	mm (in) ..	0.020 to $0.050(0.0008$ to 0.0020$)$
Wear limit	mm (in) ..	0.10 (0.0039)
Bend (per 100 mm or $3.94 \mathrm{in}:$ length)	mm (in) ...	Less than 0.05 (0.0020)
Torsion (per 100 mm or 3.94 in : length)	mm (in) ..	Less than 0.07 (0.0028)
Crankshaft and main bearing		
Journal		
Diameter	mm (in) ...	49.951 to 49.974 (1.9666 to 1.9675)
Taper \& out of round	mm (in) ..	Less than 0.01 (0.0004)

Free end play
 Crank pin

Wear limit

Diameter
Taper \& out of round
Clearance
Wear limit
Crankshaft bend
Flywheel
Clutch face runout
Piston
Diameter
Standard
Oversize (0.50)
Oversize (1.00)
Oversize (1.50)
Piston pin hole
Diameter
Piston pin
Diameter
To piston clearance
Interference fit of piston pin to connecting rod

Piston ring

Side clearance
Top ring
2nd ring
Oil ring
Gap
Top ring
2nd ring
Oil ring
mm (in) \qquad
mm (in) ... 0.30 (0.0118)
mm (in) \qquad 44.961 to 44.974 (1.7701 to 1.7706)
mm (in) \qquad Less than 0.01 (0.0004)
mm (in) \qquad 0.020 to 0.062 (0.0008 to 0.0024)
mm (in)
0.10 (0.0039)
mm (in)
0.015 (0.0006)
mm (in)
Less than $0.2(0.008)$

mm (in)	72.987 to 73.037 (2.8735 to 2.8755)
mm (in)	73.467 to 73.517 (2.8924 to 2.8944)
mm (in)	73.967 to 74.017 (2.9121 to 2.9140)
mm (in)	74.467 to 74.517 (2.9318 to 2.9337)

mm (in)
17.453 to 17.460 (0.6871 to 0.6874)
mm (in) ... 17.447 to 17.452 (0.6869 to 0.6871)
mm (in)
0.001 to 0.013 (0.00004 to 0.00051)
mm (in)
0.020 (0.0008)

```
mm (in)
0.04 to 0.07 ( 0.0016 to 0.0028 )
mm (in)
0.04 to 0.07 ( 0.0016 to 0.0028 )
mm (in)
0.04 to 0.08 ( 0.0016 to 0.0032 )
```

mm (in)	0.20 to 0.35 (0.0079 to 0.0138)
mm (in)	0.20 to 0.35 (0.0079 to 0.0138)
mm (in)	0.30 to 0.90 (0.0118 to 0.0354)

Cylinder block

Bore

Inner diameter	mm (in)	73.000 to 73.050 (2.874 to 2.876)
Wear limit	mm (in)	0.20 (0.0079)
Out of round	mm (in)	Less than 0.015 (0.0006)
Taper	mm (in)	Less than 0.015 (0.0006)
Difference between cylinders	mm (in) ...	Less than 0.015 (0.0006)

Surface flatness

mm (in) \qquad Less than $0.05(0.0020)$

Cylinder head

Surface flatness
mm (in)
Less than $0.05(0.0020)$

Tightening torque

Cylinder head bolt

A12	kg-m (ft-lb) ...	7.0 to 7.5 (51 to 54)
A10	kg-m (ft-lb) ...	6.0 to 6.5 (43 to 47)
Rocker shaft bracket bolt	kg-m (ft-lb) ..	2.0 to 2.5 (14 to 18)
Connecting rod big end nut		
A12	kg-m (ft-lb) ..	3.2 to 3.8 (23 to 27)
A10	kg-m (ft-lb)	3.0 to 3.6 (22 to 26)

Flywheel bolt

A10
Main bearing cap bolt
Camshaft sprocket bolt
Oil pan bolt
B210, B1 20
F10
Oil pump bolt
Oil pan drain plug
Locating plate bolt
Manifold nut
Fuel pump nut
Crank pulley bolt
Engine mounting bolt
Water pump bolt
Front cover bolt

$\mathrm{kg} \cdot \mathrm{m}(\mathrm{ft}-\mathrm{lb})$... 6.5 to 7.5 (47 to 54)
$\mathrm{kg}-\mathrm{m}(\mathrm{ft}-\mathrm{lb})$.. 5.6 to 6.0 (41 to 43)
$\mathrm{kg}-\mathrm{m}(\mathrm{ft}-\mathrm{lb})$.. 5.0 to 6.0 (36 to 43)
kg-m (ft-lb) .. 4.0 to 4.8 (29 to 35)
$\mathrm{kg} \cdot \mathrm{m}(\mathrm{ft}-\mathrm{lb})$.. 0.4 to 0.6 (2.9 to 4.3)
$\mathrm{kg}-\mathrm{m}(\mathrm{ft}-\mathrm{lb})$.. 1.5 to 1.9 (11 to 14)
$\mathrm{kg}-\mathrm{m}(\mathrm{ft}-\mathrm{lb})$.. 0.9 to 1.4 (6.5 to 10)
$\mathrm{kg}-\mathrm{m}(\mathrm{ft}-\mathrm{lb})$... 2.0 to 3.0 (14 to 22)
$\mathrm{kg}-\mathrm{m}(\mathrm{ft}-\mathrm{lb})$... 0.5 to 0.8 (3.6 to 5.8)
$\mathrm{kg}-\mathrm{m}(\mathrm{ft}-\mathrm{lb})$.. 0.9 to 1.4 (6.5 to 10)
$\mathrm{kg}-\mathrm{m}(\mathrm{ft}-\mathrm{lb})$.. $\quad 0.9$ to 1.4 (6.5 to 10)
$\mathrm{kg}-\mathrm{m}(\mathrm{ft}-\mathrm{lb})$.. 15 to 20 (108 to 145)
$\mathrm{kg} \cdot \mathrm{m}(\mathrm{ft}-\mathrm{lb})$.. 1.9 to 2.5 (14 to 18)
$\mathrm{kg}-\mathrm{m}(\mathrm{ft}-\mathrm{lb})$.. 0.9 to 1.4 (6.5 to 10)
kg -m (ft-lb) ... 0.5 to 0.7 (3.6 to 5.1)

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
I. Noisy engine Knocking of crankshaft and bearing	Loose main bearing Seized bearing Bent crankshaft Excessive crankshaft end play	Replace Replace Repair or replace Replace center thrust bearing
Piston and connecting rod knocking	Loose bearing. Seized bearing Loose piston pin Loose piston in cylinder Broken piston ring Improper connecting rod alignment	Replace Replace Replace pin or bushing Recondition cylinder Replace Realign
Camshaft knocking	Loose bearing Excessive axial play Rough gear teeth Broken cam gear	Replace Replace bearing thrust plate Repair Replace
Timing chain noise	Improper chain tension Worn and/or damaged chain Worn sprocket Worn and/or broken tension adjusting mechanism Excessive camshaft and bearing clearance	Adjust Replace Replace Replace Replace
Camshaft and valve mechanism knocking	Improper valve clearance Worn adjusting screw Worn rocker face Loose valve stem in guide Weakened vaive spring Seized valve	Adjust Replace Replace Replace guide Replace Repair or replace

Condition	Probable cause	Corrective action
Water pump knocking	Improper shaft end play Broken impeller	Replace Replace
II. Other mechanical trouble Stuck valve	Improper valve clearance Insufficient clearance between valve stem and guide Weakened or broken valve spring Biting or damage of valve stem Poor fuel quality	Adjust Clean stem or ream the guide Replace Replace or clean Use good fuel
Seized valve seat	Improper valve clearance Weakened valve spring Thin valve head edge Narrow valve seat Overheating Over speeding Sticked valve guide	Adjust Replace Replace valve Reface Repair or replace Drive at proper speed Repair
Excessively worn cylinder and piston	Shortage of engine oil Dirty engine oil Poor oil quality Overheat Wrong assembly of piston with connecting rod Improper piston ring clearance Dirty air cleaner Too rich mixture Engine over run Stuck choke valve Over choking	Add or replace oil Check oil level on daily basis Clean crankcase, replace oil and replace oil filter element Use proper oil Repair or replace Repair or replace Adjust Clean periodically Adjust Drive correctly Clean and adjust Start in correct way

Engine Mechanical

Condition	Probable cause	Corrective action
Faulty connecting rod	Shortage of engine oil	Add or replace oil Check oil level on daily basis Correct Low oil pressure Poor engine oil quality Rough crankshaft surface Clogged oil passage Bearing worn or eccentric
	Bearing improperly assembled oil Loose bearing	Grind and replace bearing Clean
	Incorrect connecting rod alignment	Replace Repair
Replace		
Faulty crankshaft	Shortage of engine oil	
bearing replace		

SPECIAL SERVICE TOOLS

No.	```Tool number & tool name```	Description Unit: mm (in)	For use on	Reference page or Figure No.
1.	ST0501S000 Engine stand assembly ST05011000 Engine stand ST05012000 Base	This engine stand assembly is used for disassembling or assembling engine or differential carrier throughout 360° in all directions.	$\begin{aligned} & \mathrm{A} 10 \\ & \mathrm{~A} 12 \end{aligned}$	Fig. EM-6 Page EM-22 Page EM-26
2.	ST05200000 Engine attachment	This engine attachment is installed to cylinder block and mounted on engine stand ST0501S000 in disassembling or assembling engine.	A12	Fig. EM-6 Page EM-22 Page EM-26
3.	ST05270000 Engine attachment	Attachment for setting the engine on the engine stand.	A10	Fig. EM-15
4.	ST1108S000 Valve guide reamer set ST11081000 Reamer (12.2 mm dia.) ST11032000 (8.0 mm dia.)	This reamer set used for: - Finishing the cylinder head valve guide hole. - Finishing the valve guide bore.	$\begin{aligned} & \text { A10 } \\ & \text { A12 } \end{aligned}$	Fig. EM-31 Page EM-11

Engine Mechanical

No.	Tool number \& tool name	Description Unit: mm (in)	$\begin{aligned} & \text { For } \\ & \text { use } \\ & \text { on } \end{aligned}$	Reference page or Figure No.
5.	ST11100000 Valve lip seal drift	This tool is used to install new valve lip seal.	A10	Fig. EM-60
6.	ST11320000 Valve guide drift	This tool is used to remove valve guide and install new valve guide.	A10	Fig. EM-28
7.	ST11670000 Valve seat cutter set	This cutter set is used to reface a valve seat.	A10	Fig. EM-32
8.	ST12070000 Valve lifter	This tool is used to compress valve spring by the combined action of its cam and lever, thereby facilitating the removal or installation of valve collet (for general use).	$\begin{aligned} & \mathrm{A} 10 \\ & \mathrm{~A} 12 \end{aligned}$	Fig. EM-19 Page EM-22

Engine Mechanical

No.		Description	For use on	Reference page or Figure No.
9.	ST13040000 Piston pin press stand	This tool is used with a press to drive pin into, or out of, connecting rod.	A10	Fig. EM-18 Page EM-22
10.	ST16110000 Camshaft bearing drift	This tool is used to remove camshaft bearings and install new bearings.	$\begin{aligned} & \mathrm{A} 10 \\ & \mathrm{~A} 12 \end{aligned}$	Fig. EM-35
11.	ST16680001 Pilot bushing puller	This tool is used to pull pilot bushing out of place.	$\begin{aligned} & \text { B210 } \\ & \text { B120 } \end{aligned}$	Fig. EM-53
12.	EM03470000 Piston ring compressor	This tool is used to compress piston rings while piston is being inserted into cylinder.	All	Fig. EM-70

Engine Mechanical

No.	Tool number $\&$ tool name	Description	For use on	Reference page or Figure No.
13.	EM0440000 Connecting rod aligner		All	Figure EM-48

